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A small-angle neutron—x-ray—light-scattering model for multilamellar vesicles is developed on the basis of a
simple geometry. N spherical shells with radii of an arithmetic series are allowed for displacements AR which
are limited by AR <R/N due to sterical reasons, with R being the radius of the vesicle. The model shows many
properties over a large Q range which include a Guinier region, a first power law, a correlation peak, and a
second power law connected to the surface properties of the bilayer. The first power law is related to the
compactness of the vesicle and lies between Q=2 for surfaces and Q~* for compact volumes (Porod law). The
exact exponent is related to the number of shells N. The correlation peak has a maximum sharpness for rather
small displacements AR, but no second order peak is predicted. Only for rather large displacements the
correlation peak widens up and shifts to smaller scattering angles. Then the important bilayer spacing is larger.
The predictive power of the model lies in the connection of the compactness with NV and in the maximum
correlation peak sharpness. This model considers many length scales at a time while existing theories focus on

length scales of the bilayer spacing and the bilayer itself.
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INTRODUCTION

Vesicles are formed by bilayers in solution (mainly in
water) [1]. The bilayers in turn are formed by amphiphilic
molecules such as surfactants or lipids, but also by am-
phiphilic diblock copolymers. Vesicles of the latter mol-
ecules are also called liposomes and polymersomes. The am-
phiphilicity leads to the formation of a hydrophobic bilayer
core and the hydrophilic head groups point towards the wa-
ter. In this sense the bilayer has a symmetric ABA structure
(hydrophilic-hydrophobic-hydrophilic). Just recently, it was
found that symmetric ABA triblock copolymers with a rigid
midblock form vesicles equally well [2]. The rigidity of the
midblock ensures that the peripheral blocks are at opposite
sides of the layer.

The Helfrich model reduces the properties of the bilayer
to two elastic moduli [3]. The bending rigidity « is connected
with the mean curvature, while the saddle splay modulus  is
linked with the Gaussian curvature. The lamellar phase with
an average mean curvature of zero is found for relatively
large bending rigidities «. Vesicles are always found close to
the lamellar phase region, since the mean curvature is rather
small [4]. They can be kinetically stable after applying shear
on a lamellar phase [4—6]. Then, often multilamellar vesicles
(MLV) form with many shells in one another, and these
MLVs are rather densely packed. But even for diluted
samples unilamellar and multilamellar vesicles appear [1,4].

Unilamellar and multilamellar vesicles have been studied
extensively by scattering methods and by real space imaging
methods during the past years [1]. Since the overall dimen-
sion reaches often from several 10 nm to the 10 um scale,
real space imaging methods such as atomic force and light
microscopy are often successful. Static small angle light
scattering reaches the same length scales, and thus gives in-
sight about the overall size. Scattering experiments have the
advantage that all considered parameters are obtained as av-
erage values with good statistics. Furthermore, the regular
spacing of multilamellar vesicles is obtained by small angle
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neutron (SANS) and x-ray scattering (SAXS) experiments.
The typical distances lie in the 10 to 100 nm region. Espe-
cially this internal structure is only resolved by scattering
experiments. Most experiments aimed at the two different
length scales independently, while technically light and neu-
tron or x-ray scattering experiments could be combined to
obtain a single scattering function, and even small angle neu-
tron scattering instruments alone would allow for a continu-
ous scattering curve over many length scales [7]. Small
vesicles (~10 nm) are observed over the full Q range by
conventional SANS experiments [8,9]. Larger unilamellar
vesicles are also well described by SANS [10,11].

The modeling of scattering curves of unilamellar vesicles
covers the overall properties down to simple properties of the
bilayer [8]. It is assumed that the bilayer is homogeneous
with respect to the scattering power and this bilayer forms a
single spherical shell. In this respect the vesicle is treated as
a hollow sphere with finite thickness. This model was ap-
plied successfully for small vesicles where the bilayer thick-
ness is not much smaller than the vesicle diameter. A corre-
lation peak accounts for the alternating structure bilayer-
solvent-bilayer. For larger unilamellar vesicles this
correlation is not dominant anymore.

For multilamellar vesicles the correlation between differ-
ent shells becomes important. This detail of the structure
becomes observable by conventional SANS and SAXS ex-
periments [5,8]. A first order correlation peak and sometimes
higher order peaks tell about the spacing and correlations of
the structure. The modeling assumes that the shells are lo-
cally flat and thus the MLV resembles a planar lamellar
structure for these length scales. Membrane undulations are
the major issue for disorder. The similarity to the lamellar
phase is not unreasonable since the outer shells of MLVs are
rather planar, and their contribution to the scattering is most
important. The first scattering model for lamellar membranes
was described by Caillé [12]. At this stage the model de-
scribes a perfectly aligned sample which was successfully
applied by Ref. [13]. An extended theory described addi-
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tional long range order [14], which is well reviewed by Ref.
[15] and brought to a final numerical solution including ori-
entational averaging for powder samples. At this stage a real
lamellar phase with multiple domains cannot be distin-
guished from a concentrated multilamellar vesicle phase.

Fluctuations of a unilamellar vesicle membrane are suc-
cessfully described by spherical harmonics [16-19]. In prin-
ciple, these models could be used for multilamellar vesicles
if the independence of the fluctuating shells is assumed. This
scenario will also be discussed in the discussion section. The
disorder caused by translational motions, i.e., by displace-
ments, is always present—even for rather rigid membranes.
While the zeroth order of description of concentric shells is
already published [2], displacements are a first order ap-
proach of disorder or fluctuations and are presented in this
article. These initial approaches of small angle scattering
models for MLVs are the first of its kind.

Since many multilamellar vesicles are obtained from a
lamellar phase which is sheared and then kinetically locked
the spacing of the sheets is extremely similar to the original
lamellar phase [5,8,20,21]. So the amphiphile concentration
is roughly given by ¢=d/a, with d being the bilayer thick-
ness and a being the spacing of the shells. The spacing of the
shells is given by the scattering vector of the first correlation
peak, i.e., a=27/Q. Once the MLVs leave considerable
space between each other then ¢ <d/a holds. This condition
coincides with the assumption of dilution of the Guinier law.
The Guinier law assumes that the concentration of solid par-
ticles is much smaller compared to unity. The ratio d/a just
takes care of the real internal bilayer mass of a MLV, and so
the Guinier assumption reads ¢p<<d/a.

Experiments along the dilution line [22] proved that con-
centrated MLVs do not considerably change the shape upon
dilution. Typically for concentrated MLVs many Bragg peaks
are observed. Reference [22] especially uses the same no-
menclature of form and structure factors as we will use
throughout this paper.

The paper is organized in the following way. First a brief
review summarizes the terms form and structure factor for
MLVs. Then the structure factor of the shell formation in
MLVs is described. The idea behind this derivation deals
with exactly concentric spherical shells first, before displace-
ments allow for some disorder. A simple bilayer form factor
is introduced then and the absolute macroscopic cross sec-
tion is derived. Numerical evaluations will be presented to
show the richness of this model. The final discussion will
discuss the development stage of the model.

BRIEF REVIEW OF UNILAMELLAR VESICLES

Unilamellar vesicles alone can already show a rich variety
of scattering curves. The simplest model assumes that the
scattering arises from a homogenous shell embedded in the
solvent. The homogeneity means that the scattering length
density stays constant within the shell of finite thickness. So
the chemically distinct parts of the amphiphilic molecule are
assumed to scatter with the same strength at the present state
of the model. The scattering amplitude as a function of the
scattering vector Q is calculated according to
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The first line of Eq. (1) describes the scattering amplitude of
a general structure (i being the imaginary unit) while the
second line already makes use of the spherical symmetry.
The scattering contrast Ap(r) with respect to the solvent is a
function of the absolute value of the vector 7 only. The factor
47r? is the surface of the sphere at the considered radius r
and the factor sin(Qr)/(Qr) describes the integrated phase of
an infinitely thin shell of radius r. The integration between
the two limiting radii R; and R, still has to be carried out,
and one finally arrives at

4
A(Q) = (Ap)2§(R§fsPh(QRz> — Rifn(OR)))

with fyn(x) = 3sm(x)_x—fcos(x) (2)

The function fy,;,(x) describes a solid sphere. Due to the
difference in Eq. (2) a hollow sphere is obtained. In this
simple model the macroscopic cross section of n independent
vesicles is obtained by the square of the amplitude and the
normalization to the total volume V:

d>
(0= AQP = (3 Vo

" ( (471/3)R3f\pn( OR,) — (A7/3)Ryfon(OR) )2
Vinenl )
(3)

The shell volume Vi,=(47/3)(R3—R7) is also used in the
amphiphile concentration ¢=nVg,/V. The last factor is the
form factor of a shell with finite thickness. This model was
used by Ref. [8].

While this description is exact in itself, another approach
can be made to distinguish between the thin shell and the
bilayer structure. For this purpose we write for the radius r
=R+ 6 and start from Eq. (1) again to obtain

A(Q) — 47TR2M

OR  Jga

Equation (4) represents the leading term which becomes
dominant for thin structures compared to the principal radius
R. Now the macroscopic cross section can be written in a
factorized way:

Ap(R + d)cos(Qd)ds.  (4)

a3,
d_Q(Q) = PVaenS(Q)F(Q). (5)

The volume of the shell reads now Vg, =4m7R?A with A
being the bilayer thickness. The structure factor S(Q)
=[sin(QR)/(QR)]* describes the structure of an infinitely
thin  shell, whereas the form  factor  F(Q)
=[i JAp cos(Q(S)d(S]2 contains the detailed information
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about the bilayer structure on a local scale (associated with
8). The major advantage of this factorization is the separa-
tion of the large scale structure expressed by S(Q) and the
small scale structure given by F(Q). The spirit of this sepa-
ration is transported by Pedersen [23].

Both Egs. (3) and (5) describe unilamellar vesicles on all
length scales. For large (giant) vesicles one finds three re-
gions: The Guinier region describes the whole particle, a
power law describes the surface properties of the shell, and
at larger scattering angles—in principle—the compact vol-
ume properties of a bilayer are described. For small vesicles
when the bilayer thickness is comparable to the shell diam-
eter [only Eq. (3)] this picture breaks down and mainly a
correlation peak appears [8]. The scattering of small vesicles
accounts for bilayer-solvent-bilayer correlation across the
particle. Nonetheless, the large vesicles are in the focus of
the current paper.

STRUCTURE FACTOR OF MULTILAMELLAR VESICLES

In the following a structure factor for multilamellar
vesicles shall be derived. It will idealize the single shells as
infinitely thin, and the bilayer structure will be described by
the form factor. The structure factor shall keep track of the
appearance of the whole vesicle but it shall also describe the
shell spacing at smaller length scales. As we will see in the
discussion section, the whole concept is suited to describe a
rich variety of properties. We start with the description of a
single shell

ﬁ sin(QRj/N)

N*> (QRjIN) ©

F j(Q) =
Each shell is numbered by an index j running from 1 (inner-
most shell) to N (outermost shell). So the MLV has N shells
with an arithmetic series of radii. The maximum radius is
given by R. All single structure factors are normalized in that
way, that the outermost contribution is unity at small scatter-

N2

S(Q) = 1
—N<N+ —)(N+ 1)
3 2

N

(AP,
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a) b)

FIG. 1. The geometrical assembly of a multilamellar vesicle. On
the left (a) all shells are concentric indicated by a single dot in the
center. The shell radii are an arithmetic series, i.e., the shell radius j
has the size jR/N. On the right (b) the shells are additionally al-
lowed to be shifted with respect to the predecessor. The shift vec-
tors are called v ;- The sequence of these vectors is a random walk.

ing angles O whereas the terms of the inner shells scale with
the area being proportional to j%. The current expression as-
sumes all shells being concentric, since all contributions are
real. For the total scattering amplitude all single contribu-
tions are summed up:

A(Q) = 1F1 + eié'JZFZ + eié(ljz+l?3)};‘3 + -+ eié(ﬁ2+...+JN)FN.
(7)

Now displacements of the shell centers are included, which

is indicated by the phases ¢'27j. The shift vector is given by
v ;- A sketch for the geometrical meaning of the amplitude is

presented in Fig. 1. On the left the concentric case (v;=0) is
depicted. On the right nonvanishing displacements are al-
lowed. Due to sterical reasons of the rigid shells the maxi-
mum shift is given by [v}/<AR=R/N. The series of v; is
describing a random walk as indicated in Fig. 1. The struc-
ture factor of a MLV is now defined as the square of the
amplitude, and so it reads

(F}+ F3+ -+ + Fy+2(cos(00,)), F\ F

TR
§<N+ E) (N+1)
+ 2<C08(é53)>v3F2F3 +2(cos(Q(U + 1) Yoy, 1F3
+2(c0s(Q0N))y Fy-1Fy+ ++ +2(c0s(Q@r+ + +5) Do, oy FiF). ®)
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The current structure factor is normalized in that way that the
limit at small scattering vectors is the sum of all fractions of
surfaces inside the MLV, i.e., S(0)=2(j/N)2. In expression
(8) one takes the statistics of the shift vectors into account. In
the following it is simply assumed that they can take any
value within the limiting sphere |[v;|<AR=R/N. The sym-
metry of expression (8) leads to cosine terms for the transla-
tional freedom, and the whole sum is real. Just focusing on
these cosine terms leads to the well known Fourier transfor-
mation of independent solid spheres

2(005[@(172 + + 5j)]>u2,...,uj
= (exp[ié(@ + 0 +0))]
+ exp[— ié(ﬁz + 0+ Jj)]>u2,.“,vj = 2[K(Q)]j_l' ©)

The average splits into a product of independent statistics of
independent random walk steps. Each step is limited by a
sphere of radius AR, and thus the individual Fourier trans-
formation K(Q) of a single solid sphere is obtained:

sin(QAR) — QAR cos(QAR)
(QAR)?

In a refined description one might take the bilayer thickness
A into account for the maximum shift vector, i.e., AR
=R/N-A. Even more sophisticated statistics might take the
thermodynamics of charged bilayers into account for in-
stance. Another simple approach might describe the internal
distribution of shift vectors by a Gaussian curve. Throughout
this paper we stick to the steric interpretation of K(Q), and
we will get valuable information as we will see in the dis-
cussion part. Replacing the cosine terms in Eq. (8) by the
powers of K(Q) leads to a quite simple formula, which in
matrix representation reads

K(Q)=3 (10)

S(Q): 1 1 (F]9F2’-~~’FN)
—<N+—)(N+l)
3 2
1 K' K? KN
K' 1 K! Fy
F
x| & k' 1 K> 2loan
: . K :
R S R A

This formula contains all essential information mathemati-
cally. Nonetheless, it is possible to give a closed expression
for the whole sum, where the explicit expressions of the
single shells [Eq. (6)] are taken into account. The closed
expression contains only 31 terms. The advantage becomes
obvious since for 100 shells Eq. (11) would end up with 10*
addends. These many addends need more time for the calcu-
lation and the error of oscillating terms is amplified by the
number of addends. However, the full closed expression is
quite lengthy and does not give any further information by
visual inspection; so it will be given in the Appendix.

The idea of Eq. (11) was also used in the case of linear
polymer chains [24]. Then all individual particles (mono-
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mers) are pointlike, and the displacement statistics could be
simplified by a Gaussian distribution.

In some cases Eq. (11) can be discussed explicitly without
too lengthy terms. The two cases K=1 and K=0 are special
by two meanings: On the one hand the shorter formulations
have a higher accuracy than the lengthy expression of the
Appendix. If K(Q) comes close to either 1 or 0 the following
short expressions are used. On the other hand a constant
function K(Q) has some physical meaning.

The special case K(Q)=0 const means that there is no
constructive interference of all shells, i.e., all shells scatter
independently. The actually constant function K(Q) might
not appear so interesting, but for large Q the function K(Q)
of Eq. (10) always tends to 0. This means that on small
length scales the surface properties of the shells (as we will
see below) are always seen as an independent superposition
of all contributions. On small length scales the correlations
of larger scales are lost. The special case K=0 of Eq. (11)
reads

I 3
Ng?{2 "

S(g=QRIN) = 1
4N<N+ 5>(N+ 1)

X {cos[Zq(N+ 1)](— i\lin-z ;

+(N+ 1)2>

+sin[2g(N+1)]

1
X(zsinzq—(N+1)2>/tanq] . (12)

The special case K(Q)=1 const means that all shells are ex-
actly concentric and all shell contributions show interfer-
ence. Again, this special case might look rather specific, but
for low scattering angles K(Q) always tends to 1. This means
that on large length scales the MLV always looks the same
whether there are shifts of the centres or there are not. On
large length scales the Guinier law is observed and only the
mass of the vesicle matters. The special case K=1 of Eq. (11)
reads

3

S(g=QRIN) =
N3<N+ 5)(N+ 1)

T
oo ]l 2]

(13)

For numerical reasons the limits are essential, when Eqgs.
(12) and (13) are good approximations of Eq. (11). From a
taylor expansion at Q=0 we derived the following handy
conditions:
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6N’ + 15N* + 10N> = N

1
K| <107~ 5 3
2 6N’ -10N" +4N

; (14)

K 1|<10_3@ 4N+ 12N° + 13N* + 6N° + N
36 10N7 + 36N® + 21N’ = 35N* = 35N> + AN’

(15)

With these equations the analytical options are exhausted.
But numerical calculations will shine more light on the com-
plicated relations derived so far.

FORM FACTORS OF BILAYERS AND MACROSCOPIC
CROSS SECTION

While the mathematical problems lie in the structure fac-
tor, a simple form factor shall be discussed and the model
macroscopic cross section shall be given. The simplest struc-
ture bases on a homogenous bilayer which might be a good
description for “simple” surfactants in heavy water. As a first
approximation the neutron scattering length density of heavy
water generates a clear contrast to protonated surfactants and
internal inhomogeneities shall be neglected. The basics of
the form factor are developed in concert with Egs. (4) and
(5), and for the present assumptions it reads

sin(QA/2) )2

OA/2 (16)

F(Q) = (

The splitting of structure and form factors holds well if

the bilayer thickness A is small compared to all radii of all

shells A<Rj/N (for all j). This is especially important for

the smallest radius, and so the condition reads A <<R/N. This

means that all single shells should not intersect. The con-
nected macroscopic cross section reads now

& 0= Vs @FQ. (17

The current normalization of the structure factor was done in
this way that it is proportional to the sum of all fractions of
surfaces of the inner shells [see Eq. (8)]. So the remaining
volume of the outer shell appears V,,.;=47R>A. The whole
appearance of Eq. (17) is rather simple, but all contributions
to the forward scattering are clearly addressed.

For more realistic form factors more detailed models can
be made (as in Refs. [13,22]). For surfactants one could as-
sume scattering length density profiles with clearly distinct
values in separate regions. If the surfactant molecules stick
out of the bilayer with a distribution of lengths some smear-
ing of the scattering length density profile has to be assumed
[25]. For polymers forming a hairy bilayer, the scattering
length density of the polymer brush had to be modeled as
well. The current paper aims at the major properties of the
structure factor and material dependent form factors are left
open for individual modeling.

DISCUSSION

The numerical calculations will vary some parameters of
this model. First, the number of shells N is varied, while
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FIG. 2. Theoretical scattering for a multilamellar vesicle with
different numbers of layers N. For simplicity the outer radius R
=1000 A was kept constant. A 15% smearing of the intensities was
allowed to simulate polydispersity and instrument resolution.
(Slightly modified, taken from Ref. [2].)

secondly the disorder—connected with the maximum shift
AR—is varied. For these two examples the maximum radius
R was kept constant, but a reasonable polydispersity of R
was simulated. After these two series of parameter variations
the development stage of this model is discussed.

The first series of structure factors is shown in Fig. 2,
where the K=1 const limit for exactly concentric shells is
calculated. A smearing of 15% was allowed, which we simu-
lated by a polydispersity of the radius R. Small smearing of
length scales is realistic, since a scattering experiment has a
final resolution and a polydispersity of R is present. The
polydispersity of N was not regarded so far. The series pre-
sents results for N=1, 3, 10, 30, and 100 shells. The radius
was chosen to be R=1000 A. The thick line shows a unila-
mellar vesicle (N=1). At low scattering angles (Q
<0.002 A~') the Gunier range can be observed. The struc-
ture factor is normalized in this way, that the low Q limit is
unity. At slightly higher Q (up to 0.01 A~') some oscillations
appear due to the finite size (or better: sharp boundaries) of
the vesicle. At higher Q (Q>0.01 A~!) the power law of
surfaces becomes dominant. For the vesicles with more
shells, the outer radius R is kept constant. The low Q limit
(0<0.003 A1 keeps track of the material inside the
vesicle. At slightly higher Q (Q0<0.007 A~!) there are al-
ways oscillations, but the first minimum is shifted to higher
Q which is expected when changing from a hollow to a
compact sphere. At slightly higher Q (0<0.01,0.03,
0.1,0.3 A~!) a power-law region appears which tells about
the compactness of the vesicle. It changes from Q2 for sur-
faces to Q~* for compact spheres. At a Q of roughly 27N/R
a correlation peak appears, which scales with the distance
between the layers. At even higher Q the surface of single
layers becomes visible. Here, all functions meet again, since
the concentration of material was assumed to be identical.
Since we describe the structure factor at this moment a
simple property of surfaces is seen here.

The compactness exponent « of the first power law Q¢ of
this model is shown in Fig. 3 as a function of the shell
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FIG. 3. The slope of a log-log plot S(Q) versus Q in the first
power law region is a measure for the compactness of the multila-
mellar vesicle. For a small number of shells N the surface properties
dominate, while at large number of shells the MLV shows compact
volume properties. The line is a guide for the eye.

number. Between 3 and ~30 shells the exponent is consid-
erably increasing from 2 to roughly 4, which should be the
interesting range for experiments. This graph might be used
to compare experimentally obtained exponents a with the
shell number. Already the Guinier region of scattering tells
about the material within a single vesicle, and therefore can
give an estimation about the shell number N. This experi-
ment can be done by small angle light scattering.

The second set of calculations shall demonstrate the influ-
ence of disorder, which was simulated by a maximum shift
vector AR for each shell (Fig. 4). The outer radius R
=1000 A, and the number of shells N=10 was kept constant.
AR was varied between 0.1, 60, and 100 A. For a given
maximum displacement AR the larger displacements |v| are
favored since the probability increases with [v]%. The latter

S(Q

107k 3
ok N=10
f R =1000A

10°F AR = 100; 60; 0.1A
10° bt S -

107 10 10

2 -1
Q[A’]

FIG. 4. Theoretical scattering for a multilamellar vesicle with
different degrees of disorder. The maximum shift radius varies from
0.1 over 60 to 100 A (thick, dotted, thin line), which is the theoret-
ical maximum, because the shell-to-shell distance is 100 A. The
outer radius R=1000 A, and the number of shells N=10 are kept
constant. Again, as in Fig. 2, a 15% smearing was applied.
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value AR=100 A is the physical maximum, since the shells
would intersect otherwise. One observes that the peak moves
to lower scattering angles and finally ends up as a shoulder
between the two power laws connected to the compactness
of the vesicle and the surface properties of single shells. With
large disorder many parts of the shells merge together and
the whole vesicle looks more open (as already indicated by
Fig. 1), which is reflected by a smaller slope of the compact-
ness power law and a smaller correlation peak scattering vec-
tor. The 15% smearing of the radius parameter does not con-
siderably affect the sharpness of the correlation peak. This
means that low degrees of disorder (small AR) do not change
the appearance of the correlation peak, which makes the
model rather predictive. As a practical relative maximum
sharpness of this correlation peak we obtain a FWHM of
35% for N=10 and AR=0.1 A and a smearing of 2% only,
which should be a criterion for the applicability of this
model.

If all length scales of the model (R,AR) are scaled up, the
principal shape of the scattering curves does not change. This
is interesting for hydration phenomena, for instance. None-
theless, the degree of fluctuations could change.

The first stage of concentric shells was already published
in Ref. [2]. The next higher level including translational dis-
order (displacements) is presented in this article. Since the
undulations of the shells are neglected, this model corre-
sponds to extremely rigid membranes (The existence of the
inner sharply curved shells is a question, but the scattering
contribution of these shells is a minor one.) These models are
initial models, before a complete picture of the scattering of
MLVs will be obtained in the near future. A next higher step
of modeling could include independent undulations of the
shells by the Lisy model [16,17], which corresponds to rather
well defined centres of the shells still which fluctuate weakly
due to a moderately high bending rigidity. If the membrane
rigidity is even lower, the displacements are ill defined and
the local strong fluctuations dominate the picture. In prin-
ciple, several stages of description have been passed through
for lamellar phases, as discussed by Ref. [15]. The rigidity of
the membranes is titles “hard” and “soft,” while the posi-
tional definition of the membranes is connected with the
smectic penetration length, which is large for well defined
positions (“hard smectic order”) and vice versa (“soft smec-
tic order”). The next step to (hard smectic order) for MLVs
should be an easy one with the Lisy model.

The next higher steps of modeling will change the peak
shape and position. Intuitively the peak will get broader due
to the fluctuations, and thus the present model gives an upper
limit for the peak sharpness. Similarly, it is unlikely that a
higher order peak appears with stronger fluctuations. The
intensity at smaller scattering vectors could increase due to
the fluctuations, and so the exponent alpha could be modi-
fied, and the clear information about the compactness could
be blurred.

SUMMARY

A scattering model for multilamellar vesicles is developed
covering many length scales from the whole particle down to
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the bilayer. The most important properties are derived from
the structure factor idealizing the shells as infinitely thin. The
parameters of the model are the radius of the vesicle R, the
number of shells N, and a maximum shift AR. The model
assumes an arithmetic series of radii for the spherical shells.
Due to the steric hindrance of the shells, the maximum shift
is AR<R/N. The centers of the shells describe a random
walk.

The following Q ranges are found for this model sorted
from large to small length scales:

The Guinier law describes the whole vesicle. Initial oscil-
lations appear due to the sharp boundaries of the particle.
The first power law region is connected to the compactness
of the vesicle. It varies continuously from Q2 for surfaces to
Q~* for compact bodies and is connected with the number of
shells N. The correlation peak describes the spacing of the
bilayers. A large maximum shift parameter AR reduces the
sharpness of the peak and shifts the peak to smaller scatter-
ing vectors. No second order correlation peaks are described.
The second power law accounts for the surface properties of
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the bilayer. The whole model is predictive for the first power
law describing the compactness of the vesicles and for the
correlation peak which has a maximum sharpness rather in-
dependent of the shell number N.

The transition of the compactness exponent between —2
and —4 was successfully observed by experiments in parallel
[2]. Experiments covering the whole Q range remain to be
conducted. Especially then the three essential parameters R,
N, and AR can be determined independently. The assumption
of dilution would be rather important for first tests.

APPENDIX

The complex formula of Eq. (11) does not look to have an
explicit solution for all arbitrary N, but algebraic programs
can solve this problem by rewriting the sine of Eq. (6) to
complex exponentials. Then the whole Eq. (11) has the form
of four terms similar to E,‘yjiaijain‘j‘il. Throughout the ap-
pendix the indices i and j are integers. The denominator of
the solution reads

D(g) =[- 6(K> = 1)(K* + 1)(K* + 5K + 1)n® + (- 6K® — 12K® + 48K* + 48K? + 6)n + (3K® + 36K°® + 24K* — 18K>
- 3)]sin[g(2N + 1)] + [(BK® — 12K® — 45K* — 24K? - 3)n® + (6K® — 12K® — 72K* — 48K? - 6)n + (3K® + 18K°®
— 24K* - 36K? - 3)]sin[g(2N — 1)] + ((3K® + 24K® + 45K* + 12K> - 3)n® + 6K>(3K? + 2)n + 3K*(4K* - K*
- 6)) - sin(g(2N + 3)) + (18K*(K* + 1)n® + 6K*(6K* + 3K> — 2)n + 3K*(6K* + K*> — 4)) - sin(q(2N - 3))
+ (= 18K*(K* + 1)n® — 6K*(2K? + 3)n — 3K*) - sin(¢(2N + 5)) + (3K*n® + 6K*n + 3K*) - sin(¢g(2N - 5))
+ (= 3K*?) - sin(g(2N + 7)) + [6K>(3K* + 10K? + 5)n* + 6K>(3K* + 8K* + 3)n — 12K(K* — 1)(K* + 3K>
+ 1)]sin(¢2N) + [K(- 12K® — 12K* + 12K* + 6)n* — 6K(2K* + 3)(2K* = 2K*> — 1)n + K(- 12K® — 12K* + 36K>
+ 12)]sin[¢(2N - 2)] + [K(- 30K* — 60K? — 18)n* + K(— 42K* — 72K* — 18)n + K(- 12K° — 36K* + 12K>
+ 12)1sin[¢(2N + 2)] + [~ 6K>(2K* + 1)n® — 6K3(4K> + 1)n — 12K3]sin[g(2N — 4)] + [- 6K(K® + 2K* — 2K? — 2)n?
+ 6K3(K* + 4K? + 2)n + 12K3]sin[q(2N + 4)] + [6K3(K? + 2)n® + 6K n]sin[¢(2N + 6)] + [6(K* - 1)(K? + 1)(K*
+4K% + Dn® + 3(K* - 4K? - 3)(3K* + 8K? + 1)n® + (3K® — 36K® — 120K* — 60K? — 3)n + 42K*(K* — 4K
+ 1)Jsin(g) + [- 2(K®> = (K> + 1)(K* = K> + )i’ + (= 3K® + 9K® + 3K? + 3)n® + (- K® + 7TK® + 5K + 1)n + 6K
(- 4K* + 11K?* - 4)]sin(3q) + [- 6K*(K*> — 1)(K? + 1)n® — 3K*(K* — 8K? — 5)n* + 3K*(K* + 8K* + 3)n + 6K*(K*
— K2 + 1)]sin(5g) + [- 6K(K* — 1)(2K? + 1)(K*> + 2)n® + K(- 12K® + 48K* + 102K?* + 24)n*> + K(66K* + 84K>
+ 12)n + 24K3(K* + 1)]sin(2q) + [6K(K? — 1)(K? + 1)°n® + 6K(K? + 1)(K* — 5K* = 2)n> — 6K(K? + 1)(5K* + 1)n
— 12K3(K? + 1)]sin(4q) + [2K3(K* — 1)n® — 6K3n* — 2K>(K?* + 2)n]sin(6q) + KN (K? — 1){sin(gN)K[- 72
— 12N(3K? + 4)] + sin[g(N — D[12(3K* - 2) — 12N(K? + 2)] + sin[g(N + 1)][- 12(2K? = 3) + 12N(4K> + 3)]
+ sin[g(N — 2)]K[48 + 6N(4K? + 7)] + sin[g(N + 2)]K[48 + 12N(2K?* + 1)] + sin[¢(N - 3)][- 6(4K* - 1)
— 6N(2K? = 1)] + sin[g(N + 3)][6(K*> — 4) — 6N(TK* + 4)] + sin[g(N — 4)]K[- 12 — 6N(K?* + 2)] + sin[¢(N + 4)]
XK[— 12 = 6N(K?* = 2)] + sin[¢(N — 5)]K*(6 + 6N) + sin[g(N + 5)][6 + 6N(2K? + 1)] + sin[g(N + 6)]K(- 6N)}.

(A1)
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Please remember that g=QR/N, and the function K depends
on Q as well. Together with the numerator the whole solution
reads

S(g=QRIN) = D(q)/{- 48N? sin’(q)

N<N+ E>(N+ 1)

X[K*+ 1 -2K cos(q)]*q*}. (A2)

The form of Egs. (A1) and (A2) does not evaluate well for
K=1, K=0, and non-natural N. The limits of K=0,1 are
described by Eqgs. (12) and (13). The acceptance of natural N
is correct in a physical sense, but for fitting programs one
better likes to allow for continuous changes of N. For non-
natural N one could interpolate between the neighbouring
naturals. If one includes the polydispersity of N, a summa-
tion over several N has to be done anyways.

The explicit formula of Egs. (A1) and (A2) has 31 oscil-
lating sine terms. These terms partially cancel out, and it is
numerically hard to obtain the leading term. For instance, the
limit for small Q is a constant (Guinier region). For small Q
the numerator of Eq. (A2) is proportional to Q3 if K< 1. This
means that for a Taylor series of the denominator [Eq. (A1)]
the first coefficients of the powers Q' and Q3 cancel out, and
the coefficient of the Q° power leads to a finite forward scat-
tering. For higher O the whole situation becomes not ar-
ranged clearly. The numerical solution is a Taylor expansion
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of the sine terms in the usual manner with the trick of adding
all terms in a special way. The denominator has the follow-
ing form:

D=2, A;sin(B)). (A3)

The index i is an integer number. Then a Taylor series de-
scribes the sine and cosine as expansions around natural mul-
tiples of /2:

D=3 S aliiAryBimfim2).  (Ad
joi :

The number B;=[B;/(7/2)] tells about the position of the

Taylor expansion, where the bracket [x] yields the closest

integer number for a real x. The coefficient a(i, ;) defines the

sign and the consideration of a coefficient A;/j!. In a simple

way this coefficient can be written as

a(i,j) = sin[@/2(B; + )],

but a numerically quicker treatment is possible. The trick of
this summation is to carry out the inner sum over i/ first, and
the other sum over j afterwards. This makes sure, that coef-
ficients with the same small j can cancel out first before they
are added up with terms of larger j. This trick is not precise
for extremely small Q, but usually K tends to 1 then, and the
more accurate formula of Eq. (13) takes over.
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